In Vivo Liver Delivery of CRISPR/Cas9 Using Lipid Nanoparticles Enables Gene Knockout Across Multiple Targets and Species

Keystone Symposium: Engineering the Genome
Jessica Seitzer | February 9, 2020

Disclosure: Employee of Intellia Therapeutics, Inc.
Intellia Therapeutics’ Legal Disclaimer

This presentation contains “forward-looking statements” of Intellia Therapeutics, Inc. (“Intellia”, “we” or “our”) within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, but are not limited to, express or implied statements regarding Intellia’s ability to advance and expand the CRISPR/Cas9 technology to develop human therapeutic products, as well as our CRISPR/Cas9 intellectual property portfolio; our ability to achieve stable or effective genome editing; our ability to effectively administer one dose or multiple doses of our CRISPR/Cas9 product candidates; the potential timing and advancement of our preclinical studies, including continuing non-human primate studies for our Transthyretin Amyloidosis (“ATTR”) program (“NTLA-2001”), hereditary angioedema (“HAE”), and other studies for our other programs, including preclinical and human clinical trials; the timing and potential achievement of milestones to advance our pipeline, including development candidate selection and initiation of investigational new drug (“IND”)-enabling studies and filing INDs; our ability to conduct successful IND-enabling studies of NTLA-2001 and subsequently submit an IND application in mid-2020; the ability to demonstrate our platform’s modularity and replicate or apply results achieved in our preclinical studies, including those in our IND and HAE programs or research projects, in any future studies, including human clinical trials; our ability to generate data and replicate results relating to enhancements to our proprietary lipid nanoparticle (“LNP”) technology, including its formulation and components, in preclinical or clinical studies, or that any enhancements will result in an improved product candidate profile; the potential development of our proprietary LNP-adeno-associated virus (“AAV”) hybrid delivery system to advance our complex genome editing capabilities; the potential development of other in vivo or ex vivo cell therapeutics of all types; our plans to nominate a development candidate for our HAE program in the first half of 2020; our expectations regarding potential patient populations that may be addressed by each of our programs; the intellectual property position and strategy of our licensors or other parties from which we derive rights, as well as third parties and competitors; actions by government agencies; our growth as a company and the anticipated contribution of the members of our board of directors and our executives to our operations and progress; the impact of our collaborations on our research and development programs; the potential timing of regulatory filings regarding our development programs; the potential commercialization opportunities, including value and market, for our product candidates; our expectations regarding our use of capital and other financial results during 2020; and the ability to fund operations through the end of 2021.

Any forward-looking statements in this presentation are based on management's current expectations and beliefs of future events, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: uncertainties related to the initiation and conduct of studies and other development requirements for our product candidates; the risk that any one or more of Intellia’s product candidates will not be successfully developed and commercialized; the risk that the results of preclinical studies will not be predictive of future results in connection with future studies; the risk that Novartis will not continue to pursue programs it has selected through its collaboration with Intellia; the risk that our collaborations with Regeneron or our other ex vivo collaborations will not continue or will not be successful; risks related to Intellia’s ability to protect and maintain our intellectual property position; and risks related to the ability of our licensors to protect and maintain their intellectual property position. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause Intellia’s actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in Intellia’s most recent annual report on Form 10-K and quarterly reports on Form 10-Q filed with the Securities and Exchange Commission, as well as discussions of potential risks, uncertainties, and other important factors in Intellia’s other filings with the Securities and Exchange Commission. All information in this presentation is as of the date of the release, and Intellia Therapeutics undertakes no duty to update this information unless required by law.
Intellia Therapeutics is a Full-Spectrum Genome Editing Company

CRISPR is the therapy
Genetic diseases

In Vivo

CRISPR/Cas9

Modular Platform

LNP: Lipid Nanoparticle

Ex Vivo

CRISPR creates the therapy
Immuno-oncology
Autoimmune diseases
Intellia’s *In Vivo* Liver Editing Modular Platform Employs Non-Viral Delivery

Lipid Nanoparticles (LNPs)

- Target 1 gRNA
- Target 2 gRNA
- Target 3 gRNA

Key Advantages of LNP Delivery

- Clinically-proven delivery to liver
- Large cargo capacity
- Transient expression
- Biodegradable
- Low immunogenicity
- Well-tolerated
- Redosing capability
- Scalable synthetic manufacturing
- Tunable

Transcriptase Cas9 expression from mRNA
gRNA target site specificity defined by 20mer at 5’ end
Effective Transthyretin (TTR) Liver Knockout (KO) in Mice After Single LNP Dose

Mouse TTR Immunohistochemistry (IHC)

Vehicle
1 week

TTR Knockout
1 week

TTR Knockout
6 months
Year-Long, >95% Serum TTR KO After a Single Dose in NHPs

Therapeutically Relevant Range: >60% TTR Knockdown

Control

Lead LNP:
Dose Level #1 (n=3)

Lead LNP:
Dose Level #2 (n=3)
Transient Exposure to LNP and RNA Cargo After Single Administration in NHPs

Ionizable Cationic Lipid

- Lipid Plasma
- Lipid Liver

% injected dose vs. time (h)

gRNA

- gRNA Plasma
- gRNA Liver

% injected dose vs. time (h)

Cas9 mRNA

- mRNA Plasma
- mRNA Liver

% injected dose vs. time (h)
Liver LNP Delivery Editing Tool Unmet Need Causative Gene Path to the Clinic and Registration

Platform Modularity

Liver Target and Disease

Disease and Target Selection Leverages Platform Modularity
Prekallikrein (KLKB1) KO for Hereditary Angioedema (HAE)

Genetic disease characterized by overproduction of bradykinin, which leads to **recurring, severe and unpredictable swelling** in various parts of the body.

1 in 50,000

HAE patients

Airway obstruction is particularly dangerous because it can cause death by asphyxiation.

Attacks can occur every 7-14 days
on average for untreated patients

Only chronic treatment options currently available

Approach for HAE

- Aim to reduce overproduction of bradykinin to prevent HAE attacks with a single course of treatment
- Employ a knockout edit of KLKB1 gene in hepatocytes

C1 Esterase Inhibitor (C1-INH) Regulates the Release and Buildup of Bradykinin

Healthy person

KLKB1 → Prekallikrein → Kallikrein

Factor XII → Factor XIIa

HMW Kininogen → Bradykinin

Normally inhibited by C1-INH
C1-INH Deficiency Results in Unregulated Release and Buildup of Bradykinin, Activating Endothelial Cells and Leading to Angioedema

Airway obstruction can lead to death by asphyxiation

Angioedema happens throughout the body
CRISPR/Cas9-Mediated KO of *KLKB1* Reduces the Undesired Bradykinin Activity in People with HAE

- Prekallikrein inhibitors are **clinically validated** in preventing HAE attacks
- *KLKB1* KO is expected to be **safe**, as human nulls show no associated pathology*

Fletcher Syndrome, PMID 20424433
Intellia’s Industrialized Guide Qualification Platform Enables Efficient Selection of *KLKB1* Human Lead Guides

Guide Design Criteria
- Cut site within coding region
- On-target specificity
- No overlap with common SNPs
- Cross-species homology desired

Guide Selection Criteria
- Edit results in frameshift
- Subsequent mRNA and protein reduction
- Advantageous off-target profile

Human *KLKB1* Guide Data in Primary Human Hepatocytes

<table>
<thead>
<tr>
<th>KLKB1-1</th>
<th>KLKB1-2</th>
<th>KLKB1-3</th>
<th>KLKB1-4</th>
<th>KLKB1-5</th>
<th>KLKB1-6</th>
<th>KLKB1-7</th>
<th>KLKB1-8</th>
<th>KLKB1-9</th>
<th>KLKB1-10</th>
<th>KLKB1-11</th>
<th>Control</th>
<th>Untreated</th>
</tr>
</thead>
</table>

% Editing

- Indel
- ELISA

Secreted Kallikrein (ng/ml)

- 0.0
- 0.5
- 1.0
- 1.5
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0
- 4.5

13
Humanized KLKB1 Mice Enable Further Selection of Lead Human Guides

KLKB1 Editing vs. Serum Protein Reduction

Single administration within a one dose level

Target protein reduction

VelociGene® is a registered trademark of Regeneron Pharmaceuticals, Inc.
KLKB1 KO by Single Dose LNP in NHPs Results in Reproducible and Durable Decrease in Serum Kallikrein Protein Levels and Activity

Kallikrein Protein Reduction

Kallikrein Activity Reduction

Therapeutically meaningful impact on attack rate*

*Banerji et al., NEJM, 2017
KLKB1
Knockout
Key
Takeaways

• Modularity of Intellia's platform enables independent, one-time therapeutic approaches for multiple targets

• Editing of KLKB1 gene results in therapeutically relevant reduction of kallikrein activity in NHPs

• Kallikrein activity reduction sustained for at least 22 weeks in NHPs, in a highly reproducible manner across studies

• Expect to nominate a development candidate for HAE in 1H 2020