A Modular CRISPR/Cas9 Genome Editing Platform for Durable Therapeutic Knockout and Targeted Gene Insertion Applications

Anthony L. Forget, Ph.D.
September 29, 2020

16th Annual Meeting of the Oligonucleotide Therapeutics Society (OTS)
This presentation contains “forward-looking statements” of Intellia Therapeutics, Inc. (“Intellia”, “we” or “our”) within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, but are not limited to, express or implied statements regarding Intellia’s beliefs and expectations regarding its: receiving authorization to initiate clinical studies for NTLA-2001 for the treatment of transthyretin amyloidosis (“ATTR”) pursuant to its clinical trial application (“CTA”) or similar regulatory applications, and plans to dose the first patients with by year end 2020; plans to submit an investigational new drug (“IND”) application or similar clinical trial application for NTLA-5001, its first T cell receptor (“TCR”)-directed engineered cell therapy development candidate for its acute myeloid leukemia (“AML”) program in the first half of 2021; plans to submit an IND or similar clinical trial application for its hereditary angioedema (“HAE”) program in the second half of 2021; plans to advance and complete preclinical studies, including non-human primate studies for its HAE and other programs, and other animal studies supporting other in vivo and ex vivo programs, including its AML program; development of a proprietary LNP/AAV hybrid delivery system, as well as its modular platform to advance its complex genome editing capabilities, such as gene insertion; further development of its proprietary cell engineering process for multiple sequential editing; presentation of additional data at upcoming scientific conferences, and other preclinical data in 2020; advancement and expansion of its CRISPR/Cas9 technology to develop human therapeutic products, as well as its ability to maintain and expand its related intellectual property portfolio; ability to demonstrate its platform’s modularity and replicate or apply results achieved in preclinical studies, including those in its ATTR, AML, and HAE programs, in future studies, including human clinical trials; ability to develop other in vivo or ex vivo cell therapeutics of all types, and those targeting WT1 in AML in particular, using CRISPR/Cas9 technology; ability to optimize the impact of its collaborations on its development programs, including but not limited to its collaborations with Novartis Institutes for BioMedical Research, Inc. (“Novartis”) or Regeneron Pharmaceuticals, Inc. (“Regeneron”), including its co-development programs for Hemophilia A and Hemophilia B; Regeneron’s ability to successfully co-develop products in the hemophilia A and B programs, and the potential timing and receipt of future milestones and royalties, or profits, as applicable, based on Intellia’s collaboration and co-development agreements with Regeneron and Novartis; and statements regarding the timing of regulatory filings and clinical trial execution, including dosing of patients, regarding its development programs; and the potential commercial opportunities, including value and market, for our product candidates; our expectations regarding our use of capital and other financial results during 2020; and our ability to fund operations at least through the next 24 months.

Any forward-looking statements in this presentation are based on management’s current expectations and beliefs of future events, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: risks related to Intellia’s ability to protect and maintain its intellectual property position; risks related to Intellia’s relationship with third parties, including its licensors and licensees; risks related to the ability of its licensors to protect and maintain their intellectual property position; uncertainties related to regulatory agencies’ evaluation of regulatory filings and other information related to its product candidates; uncertainties related to the authorization, initiation and conduct of studies and other development requirements for its product candidates; risks related to the ability of any one or more of Intellia’s product candidates, including those that are co-developed, will not be successfully developed and commercialized; the risk that the results of preclinical studies or clinical studies will not be predictive of future results in connection with future studies; and the risk that Intellia’s collaborations with Novartis or Regeneron or its other ex vivo collaborations will not continue or will not be successful. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause Intellia’s actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in Intellia’s most recent annual report on Form 10-K as well as discussions of potential risks, uncertainties, and other important factors in Intellia’s other filings with the Securities and Exchange Commission (“SEC”). All information in this presentation is as of the date of the presentation, and Intellia undertakes no duty to update this information unless required by law.
Today’s Agenda

1. Intellia’s Modular Platform
2. Durable Gene Knockout Applications
3. Targeted Gene Insertion Persistence
Building a Full-Spectrum Genome Editing Company

CRISPR creates the therapy

Immuno-oncology
Autoimmune diseases

In Vivo
CRISPR is the therapy
Genetic diseases

Ex Vivo
CRISPR creates the therapy

Modular Platform

LNP: Lipid Nanoparticle
Intellia’s *In Vivo* Liver Editing Modular Platform Employs Non-Viral Delivery

Lipid Nanoparticles (LNPs)

- Target 1 gRNA
- Target 2 gRNA
- Target 3 gRNA

Key Advantages of LNP Delivery

- Clinically-proven delivery to liver
- Large cargo capacity
- Transient expression
- Biodegradable
- Low immunogenicity
- Well-tolerated
- Redosing capability
- Scalable synthetic manufacturing
- Tunable

gRNA target site specificity defined by 20mer at 5’ end

Transient Cas9 expression from mRNA
Modular Approach to Unlocking Treatment of Genetic Diseases

PROPRIETARY LNP DELIVERY SYSTEM
- Transient expression
- Large cargo capacity
- Redosing capability

ENABLES MULTIPLE EDITING STRATEGIES

Remove
- **KNOCKOUT**
 - Knockout toxic or compensatory genes

Restore
- **INSERT**
 - Introduce functional DNA sequence

Remove / Restore
- **CONSECUTIVE EDITING**
 - Any combination of knockout (KO) and insertion strategies

\[\text{PROPRIETARY LNP DELIVERY SYSTEM} \]

\[\text{TRANSIENT EXPRESSION} \quad | \quad \text{LARGE CARGO CAPACITY} \quad | \quad \text{REDOSING CAPABILITY} \]

\[\text{ENABLES MULTIPLE EDITING STRATEGIES} \]

\[\begin{align*}
\text{Remove} & \quad \text{Restore} & \quad \text{Remove / Restore} \\
\text{KNOCKOUT} & \quad \text{INSERT} & \quad \text{CONSECUTIVE EDITING} \\
\text{Knockout toxic or compensatory genes} & \quad \text{Introduce functional DNA sequence} & \quad \text{Any combination of knockout (KO) and insertion strategies}
\end{align*} \]
Modular Approach to Unlocking Treatment of Genetic Diseases

PROPRIETARY LNP DELIVERY SYSTEM
- Transient expression
- Large cargo capacity
- Redosing capability

ENABLES MULTIPLE EDITING STRATEGIES

Remove

KNOCKOUT
- Knockout toxic or compensatory genes

Insert
- Introduce functional DNA sequence

Restore

Remove / Restore
- Any combination of knockout (KO) and insertion strategies

CONSECUTIVE EDITING
- AAV
Durable Gene Knockout Applications
Transthyretin Amyloidosis (ATTR)

Caused by accumulation of misfolded transthyretin (TTR) protein, which affects nerves, heart, kidneys and eyes

50,000 hATTR patients worldwide
~200-500K wtATTR patients worldwide

2-15 years typical life expectancy from onset of symptoms

Only chronic treatment options currently available

NTLA-2001 in development for ATTR

• Employs a KO edit to reduce circulating TTR protein levels
• Aims to address hATTR and wtATTR, both polyneuropathy and cardiomyopathy, with a single course of treatment

2 Compiled from various sources

hATTR: Hereditary ATTR
wATTR: Wild-Type ATTR
ATTR: Sustained >95% Serum TTR Protein Reduction After a Single Dose in NHPs

- **Control**
- **Lead LNP:** Dose Level #1 (n=3)
- **Lead LNP:** Dose Level #2 (n=3)

Therapeutically relevant serum TTR knockdown

Single Dose

Expect to dose first patient in Phase 1 study by year-end
Hereditary Angioedema (HAE)

Genetic disease characterized by overproduction of bradykinin, which leads to recurring, severe and unpredictable swelling in various parts of the body.

1 in 50,000 HAE patients¹

Airway obstruction is particularly dangerous because it can cause death by asphyxiation.

Attacks can occur every 7-14 days on average for untreated patients¹

Only chronic treatment options currently available

NTLA-2002 in development for HAE:

- Employs a KO edit of KLKB1 gene in hepatocytes
- Aims to reduce plasma kallikrein activity to prevent excess bradykinin production leading to HAE attacks after a single course of treatment

HAE: Rapid Path to Clinic for Next KO Development Candidate, NTLA-2002

LNP Delivery System

gRNA Reprograms Genetic Target

- Cas9 mRNA
- AAAA

HAE Program

- Builds on ATTR program’s infrastructure, including modular LNP delivery system
- Applies insights gained from ATTR and other research programs to liver knockout target
- Platform advances expedite progression to NHP proof-of-concept

KLKB1 gRNA

TTR gRNA

Target-specific gRNA

gRNA: Guide RNA
Achieved Sustained Therapeutically Relevant Kallikrein Activity Reduction After a Single Dose in NHPs

Kallikrein Activity Reduction

- Control
- Dose Level #1 (n=3)
- Dose Level #2 (n=3)
- Dose Level #3 (n=3)

Therapeutically relevant impact on attack rate*

Single Dose

Expect to submit IND or IND-equivalent in 2H 2021

*Banerji et al., NEJM, 2017
Partial Hepatectomy Model for Investigating Persistence of KO Genome Editing

NHP studies demonstrate sustained KO editing and target TTR protein reduction carried through regular cell turnover for 12 months
Partial Hepatectomy Model for Investigating Persistence of KO Genome Editing

NHP studies demonstrate sustained KO editing and target TTR protein reduction carried through regular cell turnover for 12 months.

Key Question: Can editing be carried through tissue regeneration following partial hepatectomy and accelerated cell division?
Protein Reduction Remains Unchanged Following Murine Liver Regeneration

Correlating gene editing rate similarly remains unchanged post-PHx by NGS analysis\(^1\)

![Liver regeneration timeline diagram](image)

Serum mTTR Levels (μg/ml)

- **Pre-Edit (Day 0)**
 - TSS Control
 - KO via CRISPR/Cas9 Gene Editing

- **Post-Edit, Pre-PHx (Day 7)**
 - TSS Control
 - KO via CRISPR/Cas9 Gene Editing

- **Post-Edit, Post-PHx Necropsy (Day 17)**
 - TSS Control
 - KO via CRISPR/Cas9 Gene Editing

* Similar results obtained for TSS control and LNP when sham surgery was performed;
\(^1\) Next generation sequencing (NGS) analysis to evaluate the frequency of insertion and deletion events (edits).
Targeted Gene Insertion Persistence
Modular Approach to Unlocking Treatment of Genetic Diseases

PROPRIETARY LNP DELIVERY SYSTEM
- Transient expression
- Large cargo capacity
- Redosing capability

ENABLES MULTIPLE EDITING STRATEGIES

- **Remove**
 - KNOCKOUT: Knockout toxic or compensatory genes

- **Restore**
 - INSERT: Introduce functional DNA sequence

- **Remove / Restore**
 - CONSECUTIVE EDITING: Any combination of knockout (KO) and insertion strategies

Intellia THERAPEUTICS
Hemophilia B (Hem B)

Rare genetic disorder caused by missing or defective Factor IX (FIX), a blood-clotting protein encoded by the F9 gene

1 in 30,000 Male births

Primarily an X-linked disorder

Severe cases often have painful, spontaneous bleeding into joints

Patients treated chronically with replacement FIX protein

Approach for Hem B:

- Targeted transgene insertion in albumin locus
- Aims to restore Factor IX protein
- First CRISPR-mediated transgene insertion in the liver of NHPs

1 Clinical manifestations and diagnosis of hemophilia (July 2019).
Effective Modular Approach for Targeted Gene Insertion in Liver

Precise integration under control of strong promoter, leads to strong, durable expression
In Vivo Insertion of Factor 9 Gene at Albumin Intron Safe Harbor Site

Hybrid Delivery System Precisely Integrates Into the Genome
In Vivo Insertion of Factor 9 Gene at Albumin Intron Safe Harbor Site

Hybrid Delivery System Precisely Integrates Into the Genome
FIX Levels in Adult Mice Are Stable Through the Completion of a 1-Year Durability Study
Achieved Supratherapeutic Levels of FIX Activity in NHPs

- Achieved an order of magnitude of greater activity than AAV gene therapy
- By varying multiple parameters we can achieve a range of circulating FIX levels and corresponding activity:
 1. Guide RNA sequence to vary genomic insertion site
 2. AAV dose that delivers inserted gene DNA sequence
 3. LNP dose that delivers CRISPR tools

1 Source: Representative presentations and press releases regarding clinical trials
2 CRISPR-Cas9 targeted gene insertion technology day 42 post LNP/AAV dosing across multiple guides
3 Source: National Hemophilia Foundation
All data generated with hyperfunctional FIX variant
Rodent studies show sustained FIX insertion editing through 12 months, demonstrating that editing is carried through normal cell turnover.

Key Question: Can insertion editing be carried through tissue regeneration following partial hepatectomy?
Persistent Protein Levels Post-PHx from Targeted Gene Insertion in Murine Model, in Comparison to Significant Loss of Protein Expression with Gene Therapy

Correlating editing rate similarly remains unchanged post-PHx by NGS analysis

![Graph showing circulating hFIX levels normalized to pre-PHx levels](image)

- Episomal AAV Expression
- Targeted Insertion via CRISPR/Cas9 Gene Editing

~95% Loss with Episomal Expression

~85% Loss with Episomal Expression

1 Next generation sequencing (NGS) analysis to evaluate the frequency of insertion and deletion events (edits).
• Intellia’s non-viral LNP CRISPR/Cas9 modular platform enables rapid pipeline development for liver targets
 - NTLA-2001 for ATTR: Expect to dose first patient by year-end
 - NTLA-2002 for HAE: Plan to submit a regulatory application in 2H 2021

• Achieved supra-therapeutic levels of FIX activity in NHP to advance targeted gene insertion for hemophilia B with partner Regeneron

• Demonstrated persistence of gene KO and insertion in a PHx model of accelerated hepatocyte turnover supporting potential for single-course curative therapies

• CRISPR gene insertion has superior profile vs. AAV gene therapy